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A B S T R A C T

In this work a new formulation to the definition of rational Primary
Care catchment areas is proposed.
The framework enables the user to select the minimum and maxi-
mum number of zones as well as the number of the basic spatial
units inside the single zones. Moreover, an important feature is un-
doubtedly to capture the maximum patient-flow in the study area.
For this purpose, a population index has been defined. According to
the definition of the index, several maximum and minimum thresh-
old values can be selected to identify a set of equal populated zones.
Albeit one of the objective to maximise is the number of people served
in a specific zone, an important property is Homogeneity. Henceforth
a paramount of attention is given to serve as many people as possible,
keeping low the attributes variance inside the single zones. These two
opposing goals are essential to the study of geographic variations.
In order to find out a reasonable trade-off solution to the problem,
rather than using heuristic parametric functions often based on spa-
tial variables, an innovative mathematical programming approach is
applied.
The model is scalable and customizable to the specific domain appli-
cation regardless the spatial dimension.
Furthermore, the design modularity makes the constraints totally trans-
parent and independent in order to provide a flexible and maintain-
able tool for any decision maker’s needs.
Thus, given the pre-determined criteria and the relevant data, the pro-
posed model serves as a basis for any partitioning engine.
Finally the integration of the zoning scheme output with a GIS through
a graphical user interface provides a framework suitable for general
purposes applications.

iii
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N O TAT I O N

There are some guidelines concerning the notation I have used in
this work. In general, calligraphic and Greek capitals denotes sets (or
some combinatorial objects), latin capitals denote matrices and small
latin or greek letters denote elements of sets, variables, functions, pa-
rameters or indices. Matrices and vector are written in bold types and
their elements in italic type. By default vectors are column vectors.
Superscript indicate entities (such as particular vectors), subscripts
indicate components of a vector or matrix. Due to a limited supply of
alphabetical symbols, I may reuse some for several purposes. Their
usage should be clear from the context, nevertheless I apologize for
any confusion that may arise. The following list summarizes the most
commonly used symbols.

v
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N O M E N C L AT U R A

Symbol Description

N The number of basic spatial units inside the study
area.

Ω The set of all the basic spatial units in the study area,
aka Universal set. e.g if N = 2 then Ω = {ω1,ω2}
and |Ω| = 2.

P(Ω) The Power set of the Universal set. e.g if N =

2 then |P(Ω)| = 2|Ω| = 4. Thus P(Ω) =

{{∅}, {ω1}, {ω2}, {ω1,ω2}}.

P(Ω+) P(Ω+) = P(Ω) \ {∅}.
Fk
P(Ω+) The Family of P(Ω) subsets such that |Fk

P(Ω)| = k,
k 6 2|Ω| − 1.

F
k,i
P(Ω+) A Family of P(Ω) subsets such that

Fk,i
P(Ω+) ∈ Fk

P(Ω+) and i 6 k. e.g if
P(Ω+) = {{ω1}, {ω2}, {ω1,ω2}}, a possible choice is
F2,i
P(Ω+) = {{ω2}, {ω1,ω2}}. Obviously iff k = 2|Ω|

then Fk,1
P(Ω+) = P(Ω+).

ΠΩ Feasible partition set of an integer set partitioning
optimization problem.

Πυ Unfeasible partition set of an integer set covering
optimization problem.

Π Partition set of an integer set covering optimization
problem. i.e Π = Πχ

⋃
Πυ.

Π Overlapping set of an integer set covering optimiza-
tion problem (i.e all the unfeasible solutions that do
not satisfy the partitioning constraints).

Υ Unfeasible set of an integer set Covering optimiza-
tion problem. i.e Υ = Π

⋃
Πυ.

X The solution space of an integer set covering opti-
mization problem. i.e X = Πχ

⋃
Υ.

σkn Stirling number of the second kind (or Stirling par-
tion number). i.e the number of ways to partition a
set of n objects into k non empty subsets.

Bn Bell number. i.e the number of ways to partition a
set of n objects.

Π(σkn) The partition set composed by k sets. In other words
all the possible partition with k subsets of Ω.

vii
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Πσkn,i
A partition solution composed by k sets
such that i 6 σkn. i.e Πσkn,i

εΠ(σ
k
n,i) =

{Πσkn,1
, . . . ,Πσkn,i

, . . . ,Πσk
n,σkn

}

πσkn,i
The real value solution associated to Πσkn,i

.(
n
k

)
The number of k-subset possible out of a set of n
distinct items. aka Binomial Coefficient

xi A vector decision variable. If it’s clear from the con-
text we do not use the superscript.

xij The j-th scalar component of vector i. e.g xi =

{xi1, xi2, . . . , xij, . . . , x
i
n}.

f A vector of objective functions. i.e f =

(f1, f2, . . . , fn)

g A vector of constraints functions. i.e g =

(g1,g2, . . . ,gp)

I The identity matrix, i.e its elements are zeros except
those on the main diagonal that are ones.

Diag(z) The diagonal matrix which diagonal elements are
the elements of the z vector.

z
′

The transpose of vector z.

Z
′

The transpose of the matrix Z.

0 The column vector of length N which components
are 0.

1 The column vector of length N which components
are 1.

1A the column vector of length 2N − 1 which compo-
nents are 0 except the component corresponding to
A ⊆ Ω which value is 1.

viii
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1
I N T R O D U C T I O N

In this section we provide a new formulation to use survey data to
establish catchment areas of primary care or Primary Care Service
Areas.
The model is based on an origin-destination matrix that has patient
postcodes on the rows and provider postcodes on the columns. Each
cell carries information about the strength of the flow of patients from
a patient postcode to a provider postcode. Primary Care Service Ar-
eas (PCSAs) are expected to represent natural travel behavior of pa-
tients and it is possible for people with chronic illness who make
more than the average number of visits to a GP to bias the geogra-
phy. To minimise this bias, each patient is assigned one ’vote’ which
is spent in proportion to the number of visits made by the patient to
a postal code. The final product is thus a spatial interaction matrix or
origin-destination matrix of total votes flowing between patient and
provider postcodes. Each cell in the matrix represents the total num-
ber of votes moving from a patient postcode to a provider postcode.
Each patient Postal Code Area (POA) is assigned to the provider POA
that receives the maximum percentage of votes from the POA. The
geographical aggregate of assigned patient POA together with the
provider POA form a Primary Care Service Area.
At the heart of the assignment procedure lies the notion of the Lo-
calization of Utilization, which I personally call the Preference Index.
This key performance indicator is the proportion of summed prefer-
ence fractions for the population residing in a PCSA that occurs in
provider POA within the same PCSA.
Ideally the population inside a PCSA (zone) obtains all of its primary
care from clinicians within the area and recognizing that there will
always be some patients who seek care in other areas, an important
criteria is to maximise this index in order to capture the maximum
patient-flow in the study area.
In the first part we prove that the maximisation of the index can be for-
mulated as a sort of Quadratic Set Partitioning problem. Specifically
for a fixed number of zones (say k) we have a linear combination of
(k)Quadratic forms.
However, one of the most serious difficulties in zone design is the ap-
proach adopted to maintain zone contiguities, as well as to check the
partitioning and covering constraints. These methods should be as
simple as possible avoiding complicated structures. That may lead to
an exponential increase of processing time, during the iterative zone
design procedure.

3
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4 introduction

Therefore, we first discuss the computational effort of some existing
procedure and then propose a plant location model where the con-
straints can be formulated as integer inequalities. The goal of our
study is to examine the zone design problem using a more general
approach . This flexibility is achieved by treating the problem of zone
design as a problem of partitioning a mathematical graph to meet a
set of generalised objectives. In particular, a simple contiguity method
is implemented to overcome the computational issue.
Another essential property is zonal homogeneity in social economic
characteristic (i.e age, social class, etc). As a matter of fact the result of
a specific partition is a stratified sampling. It may possible to divide a
heterogeneous population in the sub populations, each of which is in-
ternally homogeneous. This is suggested by the name strata, with its
implication of a division into layers. If each stratum is homogeneous,
in that the measurement vary little from one unit to another, a precise
estimate of any stratum mean can be obtained from a small sample
in that stratum.
Moreover, these estimates can be than combined into a precise esti-
mate for the whole population. In fact in aggregating adjacent basic
areal units to form a larger zone, the original individual attribute val-
ues of the basic units are replace by a single value. The uniqueness
of each areal unit and the variation for the whole area is often lost.
Depending on the aggregation scale and the spatial configuration, the
construction of new zones can yield different representations of the
same data set. Any analytical or statistical result, derived from the
data may vary depending on the particular zoning system chose. The
significance of this so-called Modifiable Areal Unit Problem (MAUP)
has been long recognised(Openshaw 1984).
The existence of scale and aggregation effects are seen as a fundamen-
tal characteristics of spatial data. They cannot be removed without do-
ing possibly irreversible damage to the data and thus any subsequent
geographical interpretation. The only alternative to the modelling ap-
proach is to try to control the scale and aggregation characteristics of
spatially aggregated data in some way.
Therefore, in order to produce homogeneous zones consisting of areal
units with similar values for the selected variable, a possible solution
is based on the minimisation of distances between the mean of zones
and their areal units.
Although the above three characteristics of this zone design system
(objective function (maximisation of the Preference Index and minimi-
sation of the Homogeneity function), contiguity and set partitioning
check algorithm) are structurally important, additional criteria per-
form special tasks expanding the capabilities of zone design systems.
Such criteria could be for example the construction of compact or bal-
anced zones in terms of shape formation and equal populated zones
respectively. Moreover, sometimes a good accessibility is required, for
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1.1 problems in spatial modelling 5

examples by means of public transportation or highways within areal
units inside the zone as well as another characteristic are physical bar-
rier such as non traversable obstacle like rivers or mountain ranges.
Evidently, each criterion applied to zone design performs a constraint
to the output optimum solution with an additional increase of pro-
cessing time and may also make the problem unfeasible.
Therefore extensive use of criteria should be avoided if the study does
not require such constraints, while through organisation of the zone
design methodology is essential before aggregation process.
The purpose of this first part is to provide a mathematical framework.
Then (in the second part) some strategies will be presented in order
to provide a geographic solution to the problem.

1.1 problems in spatial modelling

The conventional approach to spatial analysis involves the applica-
tion of a model to a study area which has been partitioned into zones.
The definition of these zonal boundaries involves the selection of the
scale of the study and the aggregation of the data to match the choice
of scale. In nearly all cases, there are an incredibly large number of
alternative scales and aggregations which could be used. It follows,
therefore, that spatial data and the patterns and processes they de-
scribe are the product of a particular set of zonal boundaries, and
that qualitative or quantitative studies of spatial data are not invari-
ant with the choice of these boundaries.
Scale is an abstract concept which cannot be easily measured except
in relative terms. The best surrogates are probably the size and the
number of zones used to partition a study area.

• The Scale Problem arises because of uncertainty about the num-
ber of zones needed for a particular study.

• The Aggregation Problem arises because of uncertainty about
how the data is to be aggregated to form a given number of
zones.

The effects of these problems are known to researchers as the scale
effect and the zoning effect.

• The scale effect is the variation in results that can be obtained
when data for one set of areal units are progressively aggre-
gated into fewer and lager units.

• The zoning effect is the variation in numerical results arising
from the grouping of small areas into larger units to form a
given number of zones.

For example, when census enumeration districts are aggregated into
wards or other administrative units the results change with increas-
ing scale and when an aggregation of enumeration districts into an
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6 introduction

aggregated level equivalent to wards occurs then it is possible to cre-
ate a variety of output zones at the same level.
These problems always occur in the design of zones for the study of
spatial data; and the two together represent one of the greatest un-
solved problems facing spatial study today.
Current zone design procedures are typically haphazard, basically
using rule-of-thumb guidelines (Like the n-steps Float Catchment Ar-
eas). Zones are thus mainly based on considerations of convenience
and the existence of readily available data, but on occasions may be se-
lected at a certain scale in order to isolate a particular spatial pattern.
However, in many cases current knowledge of spatial phenomena is
insufficient to define with any precision the scale and the aggrega-
tion needed. In other studies zone design is not regarded as being
very important, and the relationship between the choice of zones and
the results is seldom investigated, even when the data is sufficient for
such a study.
As Wong and Amrhein (1996) mentioned “researchers have to deal with
the scale effect more frequently then the zoning effect ”because most of
them usually work with specific aggregated levels and the use ad-
ministrative areas that have been already specified. However, dealing
only with one side of the problem is not the appropriate approach
and it is important that zoning effect analysis takes place for suitable
results.
In the following section we will focus on aspects that are shared by
most of the zone design models. They cover the essential aspects of
any zone design problem and can be applied to most of the applica-
tions.
Focusing on basic modelling aspects might be considered as a disad-
vantage, since a user may find that some of his requirments are not
reflected in such a model. However, there exist several reasons why
general purpose models for zone design are worth studying:

1. Often such a model provides a sufficient approximation for the
practical application.

2. The model provide “good ”solutions, which can in turn serve
as a starting point for manual improvements or local search
heuristics, which are able to take more complex criteria into
account.

3. There exists a broad range of practical problems to which the
models can be applied.

4. General purpose models can serve as a starting point for more
complex models that take additional planning criteria into ac-
count, depending on the real-world situation.

Our objective is to provide algorithms that run in a general purpose
geographical information system (GIS). Therefore we do not know
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1.2 the zone design problem 7

the exact problem that a potential user has. Modelling only the most
common and basic aspects of the zone design problem allows a wide
applicability of the provided algorithms.

In the following we present “building blocks ”for basic models in
zone design.

1.2 the zone design problem

A first important distinction is made between basic spatial units
(b.s.u) and zones.

• b.s.u: The smallest spatial unit for which data are available (e.g
Postal Code Areas, Statistical Local Area, etc).

• zone: A geographic Area containing one or more b.s.u.

Thus a catchment area is nothing more than a zone and the identi-
fication of catchment areas is essentially a feasible partition.

• Feasible partition: A disjoint set of zones which completely cov-
ers a study area so that each b.s.u is allocated to only one zone
and all the members of any zone are spatially contiguous.

• Unfeasible partition: A disjoint set of zones which completely
covers a study area so that each b.s.u is allocated to only one
zone and not all the members of any zone are spatially contigu-
ous.

The notion of contiguity is quite general and must be defined in
the specific context and topology. It is possible to define it as a ge-
ographical concept or any other criteria such as time-travel distance.
In this work we define contiguity in a simple way.

• Contiguous zone: A set of b.s.u who shares the same boundary.

In this way a zone is called contiguous if it is possible to travel be-
tween the b.s.u of the zone without having to leave the zone. This con-
sideration actually introduce another important criterion of a zone:
compactness. In most applications, compact zones usually have ge-
ographically concentrated activity, therefore less travel, more service
times. In other words, the term compactness express the desire for
zones with minimal total travel times. Unfortunately, a rigid and
concise mathematical definition of compactness is often difficult and
strongly depends on the available data. A possible solution to model
compactness is to minimize the total weighted distance (Euclidean,
squared Euclidian..) from zone center to their b.s.u, in such a way is
essentially a constraint with a sort of threshold value. However this
definition is still vague and we would like to apply a more rigourous
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8 introduction

definition. Therefore, in this work we face the problem using a geo-
metric approach measure based on convex hulls in order to achieve
compact zones. At the moment a general definition of compactness
may be the following.

• Compact zone: a round-shaped, “undistorted set ”of b.s.u with-
out holes.

Finally another criteria is Balance. Usually zones which are balanced
relative to one or more attributes (called activity measures) are sought
for. This criterion expresses a relation of zones among each other and
is motivated by the desire of an even distribution of people in the
study area. Apart from the desire for balanced zones, sometimes strict
upper or lower bounds for the size of zones are given. For example on
maximal travel times or minimal number of people within the zone.
In vision of this qualitative description of the problem we can have a
broad idea of the goal:

• Catchment Areas Identification: is the problem of grouping
small geographical areas, called basic spatial units, into larger
geographic clusters, called zones (catchment areas), in a way
that the latter are acceptable according to relevant planning cri-
teria.

These criteria are essential to analyse the structural properties of the
problem and to explore the solution space. Although all the men-
tioned zone properties are relevant, in the next section we present a
first formulation with only connectivity constraints. Also some nota-
tion is introduced that is summarized in the 1 table.

1.3 the automatic zone design problem

• N The number of basic spatial units inside the study area.

• Ω The set of all the basic spatial units in the study area, aka
Universal set. e.g if N = 2 then Ω = {ω1,ω2} and |Ω| = 2.

• ΠΩ Feasible partition set.

• ΠΥ Unfeasible partition set.

• Π Partition set i.e Π = Πχ
⋃
Πυ.

• ΠAll the unfeasible solutions that do not satisfy the partitioning
constraints).

• Υ Unfeasible set i.e Υ = Π
⋃
Πυ.

• X The solution space of the problem. i.e X = Πχ
⋃
Υ.
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1.3 the automatic zone design problem 9

Let m represent the number of attributes related to a b.s.u. Then let
be:

d(ωi) = di =


di1

di2
...

dim

 ∀i = 1, . . . ,N

The vector representing the b.s.u data. Thus we can collect all these
data in a matrix D.

D =
[
d1 ′ , d2 ′ , . . . , dN

′
]

D =


d11 d12 . . . d1m

d21 d22 . . . d2m
...

...

dN1 dN2 . . . dNm


It is worth noting that part of the data in this matrix are in the

Origin-Destination matrix. In fact for every b.s.u we have 2N − 1

attribute. I remind that each row represents the geographic area of
where patient live and each column the geographic areas of where
health care services are accessed. Thus for each b.s.u we have the pa-
tient in-flow and out-flow. However it seems we have (2N − 1) ∗N
data but some of them are redundant. For each couple of row we
have two numbers in common, then the total number of attributes
are N ∗N = (2N− 1) ∗N -

(
n
2

)
. This is natural as the Origin Destina-

tion matrix is a N by N matrix.
In order to analyse the spatial variation over the study area, it is cru-
cial to give a clear definition of this matrix. Technically, these flows
between places represent spatial interactions which can be measured
in a variety of ways using different zonal systems and observation inter-
vals:

• the zonal system refers to the way in which the geographic area
is disaggregated into geographic units- the number of the zones
and the shape into which the space is divided; and

• the observational interval refers to the time period over which the
interactions are measured. In practice, these aspects of the flow
matrix:
- the type of data, the zonal system and the observation interval-
have significant implications for the result obtained from any
analysis.
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10 introduction

Let’s define more rigorously this matrix O. The first step in the
construction of this matrix is to assign one “vote ”to each patient
living in a specific postal code (b.s.u) on the basis of the number of
visits made by the patient to a postal code (b.s.u). At the end of this
operation we have a spatial interaction matrix V of total votes flowing
between patient and provider postcodes (b.s.u).

V =



v11 v12 . . . . . . v1j . . . v1N

v21 v22 . . . . . . v2j . . . v2N
...

...
. . .

...
...

...
...

vi1 vi2 . . .
. . . vij . . . viN

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

vN1 vN2 . . . . . . vNj . . . vNN


Each cell in the matrix represents the total number of votes mov-

ing from a patient postcode to a provider postcode. The principal
diagonal of the matrix can represent just the number of people mov-
ing within the same area, or it may include non-movers as well (e.g
the same health provider within the unit), depending on the data
available and how the table is constructed. Knowing the number of
non-movers is important because it enables calculation of the total
population in each origin at the start of the interval, which is needed
for several of the measures computed below. By convention, however,
and to maintain consistency, the same population base is used to cal-
culate different indicators. Following this simple assumption, we can
exclude subscripts representing time.
We can now perform some basic analyses:

1. vjj: the total number of patients (movers and non-movers) living
in postal code j that accessed the services provided by the health
care area of the same unit.

2. Hj: summing down column j gives the number of patients living
in the study area that accessed the services provided by the
health care area of postal code j. Hj = φI(j) =

∑N
i=1 vij

3. MI
j : summing down column j excluding the principal diagonal

element gives the total number of migrant-patients (i.e patients
that leave their postal code area to receive care in a different
health care postal code area) to the health care area of postal
code j. These are the migration-patients inflows. MI

j = Hj − vjj.

4. Pj: summing across row j gives the number of patients living in
postal code area j. Pj = φO(j) =

∑N
j=1 vij
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1.3 the automatic zone design problem 11

V 1 2 3 4 Pj

1 5 15 0 5 25

2 15 10 5 5 35

3 2 4 20 4 30

4 3 0 2 5 10

Hj 25 29 27 19 100

Table 2: Origin-Destination instance|Ω| = 4

POA Inflows Outflows NetGain/Loss Gross − flows Population

j MI
j MO

j MI
j −M

O
j MI

j +M
O
j Pj

1 20 20 0 40 25

2 19 25 −6 44 35

3 7 10 −3 17 30

4 14 5 9 19 10

Total
∑

60 60 0 120 100

5. MO
j : summing across row j excluding the principal diagonal

element gives the total number of migrant-patients leaving their
place of origin j. These are the migration-patients outflows.
MO
j = Pj − vjj

6. P: Therefore the total number of votes gives the population size
in the study area. P =

∑N
j=1 Pj =

∑N
j=1Hj =

∑N
i=1

∑N
j=1 vij.

In order to give a summary of these measures, we make a simple
numeric example. Suppose we have the following Votes matrix:

V =


5 15 0 5

15 10 5 5

2 4 20 4

3 0 2 5


The table 2 gives an overview of the Votes matrix.

In order to control for population size, migration flows need to be
expressed as rates or probabilities. Therefore a first operation is to
normalize the matrix V.

O =
1

P
V̇

There are essentially two reasons to normalize our data:
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12 introduction

O 1 2 3 4 pj

1 .05 .15 . .5 .25

2 .15 .1 .05 .05 .35

3 .02 .04 .2 .04 .3

4 .03 . .02 .05 .1

hj .25 .29 .27 .19 1

Table 3: Origin-Destination-O instance|Ω| = 4

1. The analysis should be independent from the particular instance.

2. As the problem is unit independent we can study some im-
portant statistical measures of the problem as well as possible
Lower and Upper bounds to the optimisation solution.

O =



o11 o12 . . . . . . o1j . . . o1N

o21 o22 . . . . . . o2j . . . o2N
...

...
. . .

...
...

...
...

oi1 oi2 . . .
. . . oij . . . oiN

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

oN1 oN2 . . . . . . oNj . . . oNN


Turning our attention back to the instance 2 we can compute the

matrix O:

O =


.05 .15 . .05

.15 .1 .05 .05

.02 .04 .02 .04

.03 . .02 .05


In order to save space we represent 0 as a dot (0 = .) and proportion

as a dot followed by the decimal part .15 = 0.15. Now we can compute
the inward, outward and net flows in terms of proportion.

Now, moving beyond simple calculations of inward, outward and
net flows, it is possible to identify four distinct perspectives on in-
ternal migration, each associated with a set of statistical measures
that draw different insights from an inter-regional flow matrix. Orig-
inally developed to provide a framework for cross-national compar-
isons (Bell et at., 2002), these four perspectives focus on:

[ August 24, 2015 at 18:34 – classicthesis version 1.0 ]



1.3 the automatic zone design problem 13

POA Inflows Outflows NetGain/Loss Gross − flows Population

j mIj mOj mIj −m
O
j mIj +m

O
j pj

1 .2 .2 . .4 .25

2 .19 .25 −.06 .44 .35

3 .07 .1 −.03 .17 .3

4 .14 .05 .09 .19 .1

Total
∑

.6 .6 . 1.2 1

Table 4: network-parameter instance|Ω| = 4

• migration intensity- the overall level or incidence of population
mobility between zones within the system;

• migration impact- the extent to which migration transforms the
pattern of human settlement;

• migration distance- the way in which the friction of distance op-
erates to diminish the intensity of movement to more distant
locations; and

• migration connectivity- the way in which migration flows serve to
make stronger links between some zones than between others.

Drawing on a previously literature, Bell et al.(2002) evaluated a
battery of 15 statistical indicators designed to capture these four di-
mensions of mobility. Here we confine our attention to a selection of
the 15 indicators and illustrate their application in the optimisation
model using matrices of migration flows between Postal Code Areas.

Migration Intensity:

Crude Migration Intensity for Outflow

CMIOj = 100 ∗mOj

Crude Migration Intensity for Inflow

CMIIj = 100 ∗mIj

Migration Impact:

Net Migration Probability

NMPj = 100 ∗ (mIj −mOj )
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A system-wide measure of migration impact, the aggregate net mi-
gration probability (ANMP) can also be calculated to indicate the
overall extent of population redistribution between zones through mi-
gration. In this case the equation simply sums the total of the absolute
values of net migration across zones(some of which will be positive
and some negative), divides by two to avoid double counting, and
divides by the population of the study area.

Aggregate Net Migration Probability

ANMP = 100 ∗
0.5 ∗

∑N
j=1Nj∑N

j=1 Pj

Another way to measure the impact of migration is by comparing
inflows with outflows. The migration effectiveness ratio (MER) effec-
tively quantifies the asymmetry or imbalance in migration flows to
and from a zone. The index can be calculated in terms of total in-
wards and outwards flows:

Migration Effectiveness Ratio

MERj = 100 ∗
MI
j − MO

j

MI
j + MO

j

or in its simplest form, confined to the two-way flows between a
pair of zones:

MERj = 100 ∗
vjk − vkj
vjk + vkj

The MER can assume values between +100 and −100, with the
sign denoting whether there was a net gain or net loss to the zone in
question.

Migration Effectiveness Index

MEI =

∑∑N
j=1 |Nj|

MI
j + MO

j

The Migration Effectiveness Index is a system-wide equivalent to
the MER. Because the MEI is calculated using absolute values, the
index can only be positive, but otherwise interpretation is the same
as for the MER: high values indicate a large degree of asymmetry or
imbalance in flows, leading to high migration efficiency, or substan-
tial distribution for the given volume of movement. In contrast, low
values indicate that the migration system is more closely balanced
with little net distribution, irrespective of the intensity of the flows.
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Migration Connectivity:

In any system of inter-regional migration the magnitude of the
flows between different pairs of origins and destinations varies widely.
These variations are partly a product of differences in population size
and the effect of distance decay, but they also reflect the strength of
the functional linkages between regions.
A variety of indicators have been proposed to measure these linkages
(Bell et al.,2002). Here we confine our attention to just two measures:

• the index of migration inequality which compares the observed
flow matrix with a hypothetical distribution;and

• the coefficient of variation which indicates the extent of dispersion
of the flows around the mean.

Index of migration inequality:

IMI = 0.5 ∗
N∑
i 6=j

N∑
j6=i

|oij − ôij|

This index (IMI) is obtained as the difference between the observed
distribution of inter-POAS flows oij and the expected distribution ôij.
The latter might simply assume that all inter-regional flows are iden-
tical.

Coefficient of Variations:

CV =

√
σ

M
σ =

∑N
i=1

∑N
j=1(vij −M)2

N(N− 1)
, i 6= j

The coefficient of variation is calculated as the standard deviation
divided by the mean of the inter-zonal flows.

The next step is the definition of the Connectivity matrix.
At this stage it is worth noting that there are two different types of
zonal arrangement. Most geographical studies have employed spatial
aggregations based on contiguous arrangements of zones, sometimes
referred to as zoning system. However, a zoning system is only a
special case of a grouping system that incorporates a contiguity con-
straint. The non-contiguous case is referred to as a grouping system.
The use of a contiguity constraint restricts the degree of aggregational
variability and thus reducing the number of the feasible solutions.
However, in order to define the notion of contiguity we introduce an-
other important input to the problem:
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The Connectivity matrix A.

A =



0 a12 . . . . . . a1j . . . a1N

a21 0 . . . . . . a2j . . . a2N
...

...
. . .

...
...

...
...

ai1 ai2 . . .
. . . aij . . . aiN

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

aN1 aN2 . . . . . . aNj . . . 0



aij =

1,∀i 6= j if postal code i and postal code j have a common border;

0, otherwise.

Clearly the matrix A is symmetric (i.e aij = aji). Moreover another
trivial consideration is:

N∑
i=1

N∑
j=1

aij =

0, Totally disconnected. (i.e all postal codes are isolated)

N(N− 1), Totally connected. (i.e unconstrained grouping system)

Now that we have the main inputs in hand, our first goal is to un-
derstand what the solutions look like. A first step is to introduce the
main decision variables of the problem.
The aim is to aggregate the N b.s.u in Ω to form a partition of a study
area into k zones, denoted Z1, . . . ,Zk such that 1 6 k 6 N− 1. Thus
a zone is essentially a non-empty set of b.s.u. In other words is an
element of the power set P(Ω+).

Zi ∈ P(Ω+), i = 1, . . . , 2|Ω| − 1

Therefore a solution Z is a subset of the power set (i.e a set of
zones).

Z ⊆ P(Ω+) : ∀Zj ∈ Z,∃Zi ∈ P(Ω+) j ∈ {1, . . . ,k}.

Zi ∈ Z =⇒ Zij = Z
i j ∈ {1, . . . ,k}

Henceforth all the possible subsets of the power set constitutes the
solution space X.
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Z ∈ X : |X| =

2|Ω|−1∑
i=1

(
2|Ω| − 1

i

)
For instance let Ω = {ω1,ω2} then:

P(Ω+) = {{ω1}, {ω2},Ω}

X = {{ω1}, {ω2},Ω, {{ω1}, {ω2}}, {{ω1},Ω}, {{ω2},Ω},P(Ω+)}

However it should be noted that we cannot select arbitrary any
element of the solution space (some are feasible and other ones are
unfeasible). Therefore a first important question is:
What properties must Z satisfy in order to be a feasible solution for
the non-contiguous case ?
To answer at this question we need to introduce two basic subsets of
X first.

Π ⊂ X : Z ∈ Π ⇐⇒ Zsi

⋂
Ztj = {∅},Zs 6= Zt ∈ P(Ω+)

Υ ⊂ X :

k⋃
j=1

Zij = Ω, Zi ∈ P(Ω+) i = 1, . . . , 2|Ω| − 1

• Π: All the possible combination of disjoint subsets of P(Ω+)

• Υ: All the possible covering of the universal set Ω

Now it should be clear that all the possible partition of the universal
set Ω are:

ΠΩ = Π
⋂
Υ

We can then partition the solution space in three sets:

X = Π
⋃
Υ
⋃
ΠΩ

Now we must define the solution Z more formally. As mentioned
above, Z is a non-empty sets of zones made up of one or more b.s.u.
Therefore, in order to identify the elements that belong to a specific
zone, we can establish a bijection relation between the elements of the
power set P(Ω+) and a binary vector z. In fact the elements of P(Ω+)

can be seen as vectors in {0, 1}|Ω
+|. We easily can prove this statement.
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position cba Ω

1 001 a

2 010 b

3 011 ab

4 100 c

5 101 ac

6 110 bc

7 111 abc

Table 5: Order of the elements of the vectors in Ω = {ω1,ω2,ω3} = {a,b, c}

Theorem. Let 2Ω
+

= {0, 1}N
+

= {(z1, z2, . . . , zN) : zi ∈ {0, 1}, z 6= 0}
then f : 2Ω

+ → P(Ω+) : f((zj1, zj2, . . . , zjN)) = Z
j is a bijective function.

Proof. |2Ω
+
| = |{

N︷ ︸︸ ︷
{0, 1}X . . . X{0, 1} \0

′
}| = |{0, 1}N

+
| = 2N − 1

2N − 1 = 2|Ω| − 1 = |P(Ω+)| then
∀(z1, z2, . . . , zN) ∈ 2Ω

+∃Zj ∈ P(Ω+) : ωi ∈ Zj ⇔ z
j
i = 1

It is clear that the number of possible bijections are (2N−1)!. The or-
der of the elements can be arbitrary, but one particular order turns out
to be extremely practical, and helps enormously in the algorithm de-
sign as well as to underline patterns. For pedagogical purpose, many
examples are presented on the frames Ω = {ω1,ω2,ω3} (Ω, 3) or
(Ω, 4). Generalization are immediate in the case (Ω,N).
So a natural question is:
How can we choose the function f ?
In order to answer at this question, we can observe that an easy way
to establish a strictly ordered relation between the elements of 2Ω is:

zs > zt ⇔
N∑
i=1

zsi2
i−1 >

N∑
i=1

zti2
i−1∀zs, zt ∈ 2Ω

+
s 6= t ∈ {1, . . . , 2N−1}

In the same way we can assign a positional order to the elements
of the power set P(Ω+). In general, the i− th element of the vector zj

(i.e zji) corresponds to the set which elements are those indicated by a
1 in the binary representation of i. Suppose we have (Ω, 3), consider
the vector z3, the binary representation of 3 is (3)2 = 110 and the set
is thus {ω1,ω2} so z3 = Z3 = {ω1,ω2}.
According to this one-to-one and on-to mapping we can enumerate
the set of feasible solutions indicating the number of zones. To accom-
plish this task, we need to introduce further notation.
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1.3 the automatic zone design problem 19

|Ω| |ΠΩ|

10 105.06437

50 1047.26897

100 10115.67772

200 10275.79631

300 10453.98298

400 10644.10952

500 10843.20762

600 101049.50792

Table 6: Set Partitioning Complexity

σkn Stirling number of the second kind (or Stirling par-
tition number). i.e the number of ways to partition
a set of n objects into k non empty subsets.

σkn =

k∑
j=0

(−1)k−j · jn

(k− j)! · j!

Π(σkn) The partion set composed by k sets. In other words
all the possible partition with k subsets of Ω.

Πσkn,i
A partition solution composed by k sets
such that i 6 σkn. i.e Πσkn,i

εΠ(σ
k
n,i) =

{Πσkn,1
, . . . ,Πσkn,i

, . . . ,Πσk
n,σkn

}
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k Π(σk4) Z Z σk4

1 Πσ14,1
{{1, 2, 3, 4}} [z15]

Total
∑

1

2 Πσ24,1
{{1, 2, 3}, {4}} [z8, z7]

Πσ24,2
{{1, 2, 4}, {3}} [z11, z4]

Πσ24,3
{{1, 2}, {3, 4}} [z3, z12]

Πσ24,4
{{1, 3, 4}, {2}} [z13, z2]

Πσ24,5
{{1, 3}, {2, 4}} [z5, z10]

Πσ24,6
{{1, 4}, {2, 3}} [z6, z9]

Πσ24,7
{{1}, {2, 3, 4}} [z1, z14]

Total
∑

7

3 Πσ34,1
{{1, 2}, {3}, {4}} [z3, z4, z8]

Πσ34,2
{{1, 3}, {2}, {4}} [z5, z2, z8]

Πσ34,3
{{1}, {2, 3}, {4}} [z1, z6, z8]

Πσ34,4
{{1, 4}, {2}, {3}} [z9, z2, z4]

Πσ34,5
{{1}, {2, 4}, {3}} [z1, z10, z4]

Πσ34,6
{{1}, {2}, {3, 4}} [z1, z2, z12]

Total
∑

6

4 Πσ44,1
{{1}, {2}, {3}, {4}} [z1, z2, z4, z8]

Total
∑

1

Table 7: Set Partitioning solution space|Ω| = 4

Now it is immediate to compute the number of feasible solutions.

|ΠΩ| =

|Ω|∑
k=1

σk|Ω| =

|Ω|∑
k=1

k∑
j=0

(−1)k−j · j|Ω|

(k− j)! · k!

The formula indicates that one of the reasons why the zone design
problem is especially difficult is due to the size of the solution space.
The dimension of a usual real world problem makes unfeasible any
attempt to explicitly enumerate all the possible solutions.However
the solution space dimension reduces its size with the connectivity
constraints (not significantly) 6. The numbers of all possible partitions
of a set |Ω| = n is usually indicated as B(n) (The Bell number).

Suppose we have have (Ω, 4), then the number of feasible solutions
are:
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Πi Zi Z1 Z2 Z3 si Z

1 123 123 ∅ ∅ 000 [z7, 0, 0]

2 12|3 12 3 ∅ 001 [z3, z4, 0]

3 13|2 13 2 ∅ 010 [z5, z2, 0]

4 1|23 1 23 ∅ 011 [z3, z4, 0]

5 1|2|3 1 2 3 012 [z1, z2, z4]

Total B3 5

Table 8: Set Partitioning solution space|Ω| = 3

|Π(Ω,4)| =

4∑
k=1

σk4 =

4∑
k=1

k∑
j=0

(−1)k−j · j4

(k− j)! · k!
= 15

As mentioned in the introduction, areal units can be aggregated
into various outputs zones on the same aggregated level. The table 7

shows different outputs zones for each created aggregation level. On
the top of the table there is the level of a single output zone; this is
the most aggregated level providing only a summary of the individ-
ual characteristics and it is the most heterogeneous level. On the other
hand, on the bottom there is the level of four output zones the finest
one, which preserves homogeneous zone but violates other criteria.
However, there is still an open question:
How to represent a set partition inside a computer ?
As repeatedly mentioned in the previous sections, the partitions of
a set are the ways to regard that set as a union of non empty, dis-
joint subsets called ‘Zones ’. For example, we listed in the table 8 the
five essentially different partitions of (Ω, 3), using a vertical line to
separate one block (zone) from another. In this list the elements of
each block could have been written in any order, and so could the
blocks themselves because 13|2 and 31|2 and 2|13 and 2|31 all repre-
sent the same partition. But we can standardize the representation by
agreeing, for example, to list the elements of each block in increasing
order, and to arrange the blocks in increasing order of their smallest
elements. With this convention, for example, the 2|31 is then sorted in
this way: 2|31− > 2|13− > 13|2.
Following this convention it is straightforward to encode a partition
as a restricted growth string, namely as a string s =

[
s1 s2 s3

]
in

which we have:

s : s1 = 0, sj+1 6 1+max(s1, . . . , sj) 1 6 j < N
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The idea is essentially based on the fact that every set partition
defines an equivalence relation. If Πi is a partition of (Ω,N) we can
write:

ωu ≡ ωv mod Πi ⇔ ωu,ωv ∈ Zk : Zk ∈ Πi

In other words u ≡ v, whenever ωu and ωv belong to the same
block of Πi. Therefore the idea is to set sj = sk if and only if ωj ≡
ωk, and to choose the smallest available number for sj whenever j
is smallest in its block. Following this convention we can select any
partition using the decision vector s.
For example, the restricted growth string for 1|23 is:

s1 =


0,ω1 ∈ Z1 Z1 ∈ Z1 = Π1

1,ω2 ∈ Z2 Z2 ∈ Z1 = Π1

1,ω3 ∈ Z2 Z3 ∈ Z1 = Π1

This is an efficient way to represent a solution Z inside the com-
puter. The space Complexity S of this data structure is given by the
following formula (it computes the number of bits storage):

S(Rg) =


∑blog2(N)c
i=3 i · 2i−1 blog2(N)c > 3

6 N = 3

2 N = 2

It is worth noting that the dimension of the matrix Z is NxN. In
the case of N = 600, we need only 800.25 B instead of 45 KB; this
is an important result as it is crucial to keep in memory a pool of
solutions (with specific properties) during the execution of the al-
gorithm. Moreover all the visiting algorithms have linear Complex-
ity Θ(N) instead of Θ(N2). Clearly there is an isomorphism between
s ∈NN : si ∈ {0, . . . ,N− 1} and Z ∈ {0, 1}Nx{0, 1}N:

zij =

1, ifωi ∈ Zj ⇔ sj = j− 1

0, otherwise

In this way the elements of ΠΩ can be seen as vectors in NN. We
can prove this statement:

Theorem. There is a bijection between the restricted growth string func-
tions Rg on (Ω,N) and ΠΩ.
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Proof. Let Rg be the set of all restricted growth functions on (Ω,N)

and let ΠΩ be the set of all partitions on (Ω,N). We define a map Φ :

Rg → ΠΩ which is the required bijection. Put Φ((s1, s2, . . . , sn)) =

Z1
⋃
Z2
⋃
· · ·
⋃
Zk where Zi = {j : sj = i− 1, i ∈ {1, . . . ,k}} and the

map Φ certainly maps Rg to ΠΩ. We must verify that it is one-to-
one and onto. To do this, we explicitly construct the inverse function
to Φ, Φ−1 : ΠΩ → Rg. Let Z1

⋃
Z2
⋃
· · ·
⋃
Zk ∈ ΠΩ be a set par-

tition. Assume the blocks have been ordered in the following way:
0 ∈ s1,min{ωi ∈ Ω\{Z1

⋃
Z2
⋃
. . .Zj−1}} ∈ Zj. This just means

that we order the blocks so that block Zj contains the smallest ele-
ment not in preceding blocks. We define Φ−1(Z1

⋃
Z2
⋃
· · ·
⋃
Zk) =

(s1, s2, . . . , sn) by si = j− 1 if and only if ωi ∈ Zj. We must check
that (s1, s2, . . . , sn) is an Rg function. Clearly s1 = 0. Let ωi ∈ Ω and
put m = max{s1, . . . , si−1}. Then ωi−2 ⊂ Z1

⋃
Z2
⋃
· · ·
⋃
Zm and

either ωi ∈ Z1
⋃
Z2
⋃
· · ·
⋃
Zm or i is the smallest number outside

this union. In the first case si 6 m while in the second case ωi is
in the block Zm+1, which means that si = m+ 1. This verifies that
si 6 max{s1, . . . , si−1}+ 1. It is now easy to verify that Φ ◦Φ−1 and
Φ−1 ◦Φ are identity maps on ΠΩ and Rg respectively. This implies
that Φ is a bijection.

The bijection between the Rg and ΠΩ enables us to enumerate all
the partitions of Ω. However, there are several ways to enumerate the
elements of a set! Therefore, an important question is: How can we
establish an ordered relation between the elements of ΠΩ?
A natural order for any list of strings or sequences is lexicographic or-
der. Lexicographic order is based on the familiar idea as the ordering
of words in dictionaries. The only requirement is that the letters that
make up the alphabet of the language be ordered. In the definition
below we use ≺ to denote the assumed underlying ordering of the
symbols of the alphabet and < to denote orderings of strings. It is
worth noting that in most instances the alphabet is the set of natural
numbers under the usual numeric ordering 1 ≺ 2 ≺ 3 . . . .

Definition. In lexicographic (or lex) order a1a2 . . . an <l b1b2 . . . bm if
either:

1. for some k, ak ≺ bk and ai = bi for i = 1, 2, . . . ,k− 1

2. n < m and ai = bi for i = 1, 2, . . . ,n

In other terms a1a2 . . . an appears in a dictionary before the a se-
quence b1b2 . . . bm if and only if at the first i where ai and bi dif-
fer, ai comes before bi in the alphabet. If the sequences have differ-
ent length and same symbols than the shorter comes first. Follow-
ing this ordering between the restricted growth strings, once we set
the first digit to 0 all the remaining strings are automatically com-
puted.(Obviously we could use S[1] = 1 instead, but it is just a con-
vention). Therefore this convention suggest the following simple gen-
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Algorithm 1 The growth-string partition enumeration algorithm

1: procedure RG-Partitions(N : N)
2: . Display all the partitions of |Ω| = N in lexicographic order
3: for i← 1,N do
4: S[i]← 0

5: end for
6: for i← 1,N− 1 do
7: B[i]← 1

8: end for
9: m← 1

10: Done← false

11: while !Done do
12: Print(S)
13: if S[N] = m then
14: j← N− 1

15: while S[j] = B[j] do
16: j← j− 1

17: end while
18: if j! = 1 then
19: S[j]← S[j] + 1

20: m← B[j] + S[j]

21: j← j+ 1

22: while j < N do
23: S[j]← 0

24: B[j]← m

25: j← j+ 1

26: end while
27: S[N]← 0

28: else
29: Done← true

30: end if
31: else
32: S[N]← S[N] + 1

33: end if
34: end while
35: end procedure
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eration scheme, due to George Hutchinson 1.
Although lexicographic order is aesthetically pleasing, there is often
no particular advantage to use it. For example, suppose that we aren’t
interested in all of the partitions; we might want only the ones that
have exactly m blocks. Can we run through this smaller collection of
restricted growth strings, changing only one digit at a time?
Yes! a very pretty way to generate such a list has been discovered by
Frank Ruskey, and it is listed according to a co-lexographic order.

Definition. In co-lexicographic (or colex) order a1a2 . . . an <c b1b2 . . . bm
if an . . . a2a1 <l bm . . . b2b1 in lex order.

Algorithm 2 partition enumeration of k blocks algorithm

1: procedure RGK-Partitions(N,k : N,k > 1)
2: . Display all the partitions of kblocks in colex order
3: for i← 1,N do
4: S[i]← i− 1

5: end for
6: Gen-k(N,k,S)
7: function Gen-k(N,k,S)
8: . Recursive procedure to print all the partitions.
9: if N=k then

10: Print(S)
11: else
12: for i← 0,k− 1 do
13: A[N]← i

14: Gen-k(N− 1,k,A)
15: A[N]← N− 1

16: end for
17: if k > 1 then
18: A[N]← k− 1

19: Gen-k(N− 1,k− 1,A)
20: A[N]← N− 1

21: end if
22: end if
23: end function
24: end procedure

The 2 function calls the recursive procedure 7 inside.
Sometimes, however, the user might want to restrict the number of
basic spatial units in each zone. Therefore, among all the partitions
that have m blocks, we are interested only to those that have a min-
imum (m) and a maximum(M) number of b.s.u for each zone. We
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identify this set with the following notation Π(σkN)
M
m .

According to these constraints we can partition the set of zones

Zm = {Zi ≡ Zj mod m⇔ |Zi|, |Zj| > m}

ZM = {Zi ≡ Zj mod M⇔ |Zi|, |Zj| 6M}

Then, the set of feasible partitions are:

Π(σkN)
M
m = {Zi ∈ Zm

⋂
ZM : km 6 k 6 kM}

km =
N

M
kM =

N

m

Clearly Π(σkN)
M
m ⊆ Π(σkN); So the next question is:

How can we identify this subsets of partitions ?

In order to answer at this question we need to introduce a new
combinatorial object: The partition of an integer
In fact a solution is a partition of the study area Ω = {ω1, . . . ,ωN}
into k parts and for each part we have a set of basic spatial units.

Definition. Partition of an integer: A k-tuple of positive integers p =[
p1 p2 . . . pk

]
is an integer partition of N if p1 + p2 + · · ·+ pk = N

and p1 > p2 > · · · > pk > 1. The number of parts of p is k.

An example of a partition of 12 into 6 parts is p =
[
4 2 2 2 1 1

]
.

Alternatively, we can completely describe p by giving the number of
times that a part i occurs, called the multiplicity of i. In this notation
p = 412312, because p has one 4, three 2’s and two 1’s.
Let P(N,k) denote the number of partitions of N into k parts, then:

P(N,k) =


1 k = 1, k = N;

P(N− 1,k− 1) + P(N− k,k) 1 < k < N;

0 k > N

Let P(N) the number of partitions of the integer N. Here’s a table of
P(N) for 1 6 N 6 7:

N 1 2 3 4 5 6 7

P(N) 1 2 3 5 7 11 15

For instance, there are 5 different ways to partition the integer 4 9.
Suppose we want all the partition with no more than two b.s.u for
each zone. Excluding the trivial partitions (k = 1,N):
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k P(4,k) p P |P| σk4

1 1 4 Πσ14,1
1

Total
∑

1

2 2 31 Πσ24,1
,Πσ24,2

,Πσ24,4
,Πσ24,7

4

22 Πσ24,3
,Πσ24,5

,Πσ24,6
3

Total
∑

7

3 1 212 Πσ34,i
i = 1, . . . , 6 6

Total
∑

6

4 1 14 Πσ44,1
1

Total
∑

1

Table 9: Set Partitioning solution space - cardinality|Ω| = 4

Π(σk4)
2
1 = P

3
⋃
P4

P3 = {Πσ24,3
,Πσ24,5

,Πσ24,6
}

P4 = {Πσ34,i
i = 1, . . . , 6}

We can enumerate all this partition executing the following algo-
rithm 3.

Now that we are more familiar with the notation and have a clear
overview of the solution space, we can state the problem more for-
mally.
As already mentioned in the introduction section, the problem of the
Catchment Area Identification is to select a set of zones in a way to
meet a set of general criteria and to optimise two or more objectives.
Therefore, the problem is to define an objective function f in order to
provide a ‘measure of partition performance ’in terms of the model
and a predefined target value, so that by optimizing this function an
optimum partition will be obtained.
Generally the objective function would be designed to identify a par-
tition with whatever properties are considered. However, as a ba-
sis we can define a more general form of what is known as uncon-
strained optimal automatic zone design problem (UAZP). Thus the prob-
lem involves finding for any fixed D,A,k a classification Z∗ such that
f(Z∗;D,A,k) = min/max f(Z;D,A,k).
Thus the function f(Z;D,A,k) is a scalar function of the indepen-
dent variables Z and the constant variables D,A,k. It maps the per-
formance of any partition on the set of real numbers. It is similar to
a contiguity-constrained set partitioning problem. They concern the
partitioning of a set of elements in a way which optimizes some ob-
jective function defined on the set of all partitions. Many of these
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Algorithm 3 partition enumeration of an integer in k parts algorithm

1: procedure Integer-Partitions(N,k : N,N,k > 2)
2: . Display all the partitions of an integer in k parts
3: for j← 2,k do
4: A[i]← N− k+ 1

5: A[j]← 1

6: end for
7: A[k+ 1]← −1

8: Done← False

9: while !Done do
10: Print(()A)
11: if A[2] > A[1] − 1 then
12: j← 3

13: s← A[1] +A[2] − 1

14: while A[j] > A[1] − 1 do
15: s← s+A[j]

16: j← j+ 1

17: end while
18: . s = A[1] + · · ·+A[j− 1] − 1
19: . increaseA[j]

20: if j > k then
21: Done← true

22: else
23: x← A[j] + 1

24: A[j]← x

25: j← j− 1

26: end if
27: while j > 1 do
28: A[j]← x

29: s← s− x

30: j← j− 1

31: A[1]← s

32: end while
33: else
34: A[1]← A[1] − 1

35: A[2]← A[2] + 1

36: end if
37: end while
38: end procedure
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problems can be solved by integer linear programming techniques
but large problems are nearly always intractable.
Unfortunately, the computational difficulties associated with the AZP
are far more complex than the set partitioning problem. If it is treated as a
mathematical programming problem than the function f(Z∗;D,A,k)
cannot be assumed to be either convex or continuously differentiable
or linear in relation to the independent variables. Furthermore, the
contiguity constraints are dynamic, depending on the data and the
large number of configurations.
In this instance, we assumed a fixed number of zones. Indeed taxo-
nomic procedures in a spatial context operate manipulating the zone
system so as to achieve maximum formal or functional homogeneity.
Thus it is suggested that there is usually a dependency of k on the
zonal data produced by any mapping of Z∗ on to D.
Accordingly, a more general statement of the problem is:

f(Z∗,k∗;D,A) = min/max f(Z,k;D,A)

k∗ = argmax k{min/max f(Z;D,A,k)}

k ∈ {1, . . . ,k− 1}

Therefore we’d like to determine the value of k such that for k = k∗

we have min/maxf(Z;D,A,k∗) = Z∗. It now clear that we have only
one scale problem which regards the value of k∗ whereas we can have
(k− 2) aggregation problems. In fact considerable complexity is intro-
duced by the need to continually re-estimate Z∗ as k changes.
The solution proposed to overcome this issue, is to define a multi-
objective function, which enclose all the criteria considered and the
homogeneity property.Unfortunately, the non-linearity of the objec-
tive function make unfeasible any attempt to solve the problem with
any linear programming techniques. Therefore, a first step is to lin-
earize the function in a way that the two formulation are isomor-
phic.In other words, the objective is to formulate an integer linear
model equivalent to the non-linear model. It is a challenging task as
we have to prove that the optimal partition of the linear model is ex-
actly the same as the non-linear one.
Let f and f̂ the objective functions of the non-linear and linear model
respectively. In the same way, let g and ĝ the constraints functions.
Then the goal is:

min/max

Non−linear−model︷ ︸︸ ︷
f(Z,k;D,A) ⇔ Z∗ ⇔min/max

linear−model︷ ︸︸ ︷
f̂(Z,k;D,A)

s.to : g(Z,k;D,A) ⇔ s.to : ĝ(Z,k;D,A)
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1.4 the optimisation model

The first step of any optimisation model is the definition of the deci-
sion variables, the objective function and the constraints.
Regarding the decision variables, we have introduced the classifica-
tion matrix Z (N by N matrix). Although this representation is com-
putationally inefficient, we initially refer to this matrix for a first for-
mulation of the model.
As for the objective function, it is basically composed by two terms:

1. IL - Localization Index: It is the proportion of summed prefer-
ence fractions for the population residing in a Zone that occurs
in provider POA within the same Zone.

2. IH - Homogeneity Index: It is the variation of specified at-
tributes (such as Age,Sex and so on) that occurs within the
Zones of the Partition.

The first term captures the fact that users want geographies such
that patients in one unit mostly attend services in the same unit. The
second term captures the fact that units must be homogeneous along
certain user specified dimensions, and variation of certain variables
should mostly occur across, but not within, units.
Therefore for each zone Zi we have two opposing goals:

1. max ILi - maximise the number of people served.

2. min IHi - minimize the population attributes variance.

Finally we need to check feasibility for a set of constraints. Specifi-
cally we must ensure that the matrix Z constitutes a partition whose
zones are spatially contiguous.
It is clear that the next tasks are the definition of:

f =

fL =
∑k
i=0 ILi The − Localization − Index − function

fH =
∑k
i=0 IHi The − Homogeneity − Index − function

g =

gP The − Partitioning − constraints

gC The − Contiguty − constraints

1.4.1 The Localization Index function

According to the definition of IL it is clear that fL depends by the
values of Z and O (the Origin Destination matrix).

fL(Z,O)→ [0 1] Z = (Z1, . . . ,ZN)
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fL(Z,O) =
N∑
i=0

ILi(Zi,O) Zi ∈ Z

ILi : ILi(Zi,O)→ [0 1]

In order to understand how to define the ILi(Zi,O) we make a
simple numeric example first. Suppose we have the following Votes
matrix:

V =


5 15 0 5

15 10 5 5

2 4 20 4

3 0 2 5


And the partition Πσ34,3

= Z = {{1}, {2, 3}, {4}, ∅} associated to the

classification vector Z =
[
z1 z6 z8 0

]
.

Z =


1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0


Then the index localization function value is given by the following

computation:

fL(Z,V) =
4∑
i=1

ILi(Zi,V) = IL1(z1) + IL2(z6) + IL3(z8) + IL4(0)

Thus, the number of patients covered for each zone is:

IL1(z1) = v11 V =


5© 15 0 5

15 10 5 5

2 4 20 4

3 0 2 5


= 5

IL2(z6) = v22 + v23 + v32 + v33 V =


5 15 0 5

15 10© 5© 5

2 4© 20© 4

3 0 2 5


= 10+ 5+ 4+ 20 = 39
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IL3(z8) = v44 V =


5 15 0 5

15 10 5 5

2 4 20 4

3 0 2 5©


= 5

IL4(0) = 0

fL(Z, 3;V) = 5+ 39+ 5 = 49

What kind of function ILi(Zi,V) is ?
Let’s play with Matrix Algebra !

IL2(z6) = (z6) ′ ·V · (z6)

=
[
0 1 1 0

]
·


5 15 0 5

15 10© 5© 5

2 4© 20© 4

3 0 2 5

 ·

0

1

1

0



=
[
17 14© 25© 9

]
·


0

1

1

0


= 14+ 25 = 39

This is a familiar quadratic form:

Definition. Given a symmetric square matrix O (N by N) and a vector
z ∈ RN ({2N ⊂ RN}), the expression z ′ ·O · z identifies a quadratic form
over RN.

O =


o11 o12 . . . o1N

o21 o22 . . . o2N

. . . . . . . . . . . .

oN1 oN2 . . . oNN

 ; z =


z1

z2
...

zN


The expression z ′ ·O · z:
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[
z1 z2 . . . zN

]
·


o11 o12 . . . o1N

o21 o22 . . . o2N

. . . . . . . . . . . .

oN1 oN2 . . . oNN

 ·

z1

z2
...

zN


Computing all the cross products:

z ′ ·O · z = o11z
2
1 + o12z1z2 + o13z1z3 + · · ·+ o1Nz1zN+

o21z2z1 + o22z
2
2 + o23z2z3 + · · ·+ o2Nz2zN+

oN1zNz1 + oN2zNz2 + oN3zNz3 + · · ·+ oNNz2N

Therefore an n-ary quadratic form over a field K is a homogeneous
polynomial (the non-zero terms all have the same degree) of degree
2 in N variables with coefficient in K.

q(z1, z2, . . . , zN; O) =

N∑
i=1

N∑
j=1

oijzizj oij ∈ K

It is worth noting that the matrix V is generally asymmetric, how-
ever it does not matter as we can always make this matrix symmetric:

N∑
i=1

N∑
j=1

oijzizj =

N∑
i=1

oiiz
2
i +

N−1∑
i=1

N∑
j=i+1

(oij + oji)zizj

If we replace oij and oji by oij+oji
2 we obtain the same homoge-

neous polynomial:

ôij = ôji =
oij + oji

2
oij ∈ K

N−1∑
i=1

N∑
j=i+1

(oij + oji)zizj =

N−1∑
i=1

N∑
j=i+1

(ôij + ôji)zizj

Thus, the Index Localization function is a linear combination of
quadratic forms:

fL(Z,V) =
N∑
i=1

ILi(Zi,V) =
N∑
i=1

q(Zi,V) Z ∈ Π

Clearly ILi(Zi,V) > 0 as:

N∑
i=1

N∑
j=1

oijzizj > 0 oij, zi, zj > 0.

[ August 24, 2015 at 18:34 – classicthesis version 1.0 ]



34 introduction

Although the eigenvalues of the matrix O can give us precious
information about the network flow, their computation is sometime
cumbersome and have some numerical issues. Therefore, an equiva-
lent measure to capture the patients’ mobility is given by the statisti-
cal indicators mentioned earlier. These indicators have a clear mean-
ing and can be used by anybody.

In order to analyse the energy landscape of the objective function,
the problem should be instance independent. Hence, the matrix V
has to be normalized:

O =


.05 .15 . .05

.15 .1 .05 .05

.02 .04 .02 .04

.03 . .02 .05


The table 10 shows the Index Localization function values for all the

partitions over (Ω, 4). As can be seen from the table, the maximum
and minimum values of the function correspond to the partition Πσ14,1

and Πσ44,1
respectively. Moreover, the function fL(k;Z,V) is a mono-

tone decreasing function of the number of zones. We should not be
surprised, as the Universal set covers all the study area whereas the
latter one (the singletons set) only catches the non-mover patients in
the basic spatial units. It’s now clear why we refer to these basic par-
titions as trivial solutions. However, in order to give a formal proof
of these results, it is crucial to define a partition in terms of the classi-
fication matrix Z.
The next steps in our analysis of fL(Z,V) are:

1. The definition of the Partitioning constraints gP

2. The computation of a Lower and Upper Bound; and

3. The proof that fL(k;Z,V) is a monotone decreasing function;
and

4. A possible relation between the eigenvalues of the matrix O and
the statistical indicators.

Let’s start with the Partitioning constraints:

We based the definition of a partition on two basic subsets of the
solution space:

ΠΩ = Π
⋂
Υ Π,Υ ⊂ X
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k Π(σk4) Z fL(Z1) fL(Z2) fL(Z3) fL(Z4) fL(Z)

1 Πσ14,1
[z15] 1 . . . 1

Max fL(Z;V , 1) = fL(Πσ14,1
) 1

2 Πσ24,1
[z8, z7] .76 .05 . . .81

Πσ24,2
[z11, z4] .63 .2 . . .83

Πσ24,3
[z3, z12] .45 .31 . . .76

Πσ24,4
[z13, z2] .46 .1 . . .56

Πσ24,5
[z5, z10] .27 .2 . . .47

Πσ24,6
[z6, z9] .18 .39 . . .57

Πσ24,7
[z1, z14] .05 .55 . . .6

Max fL(Z;V , 2) = fL(Πσ24,2
) .83

3 Πσ34,1
[z3, z4, z8] .45 .2 .05 . .7

Πσ34,2
[z5, z2, z8] .27 .1 .05 . .42

Πσ34,3
[z1, z6, z8] .05 .39 .05 . .49

Πσ34,4
[z9, z2, z4] .18 .1 .2 . .48

Πσ34,5
[z1, z10, z4] .05 .2 .2 . .45

Πσ34,6
[z1, z2, z12] .05 .1 .13 . .28

Max fL(Z;V , 3) = fL(Πσ34,1
) .7

4 Πσ44,1
[z1, z2, z4, z8] .05 .1 .2 .05 .4

MaxfL(Z;V , 4) = fL(Πσ44,1
) .4

Table 10: Localization Index energy landscape|Ω| = 4

Therefore, the partitioning constraints can be expressed in terms of
two set of constraints:

gP = gΠ
⋂
gΥ

gΠ : bin− packing− constraints.

gΥ : set− covering− constraints.

What kind of constraints the classification matrix Z should satisfy
in order to identify:

• Π: All the possible combination of disjoint subsets of P(Ω+)

• Υ: All the possible covering of the universal set Ω
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Theorem. Let Π be the set of all the possible combination of disjoint subsets
of P(Ω+) and Z ∈ {0, 1}Nx{0, 1}N. Then Π = {zij ∈ Z :

∑N
j=1 zij 6

1,∀i = 1, . . . ,N}.

Proof. Let Fk
P(Ω+) ∈ X a generic solution composed by k subsets of

P(Ω+). Let Zs and Zt ∈ P(Ω+) such that s 6= t ∈ i = {1, . . . , |P(Ω+)|}.
Then
Fk
P(Ω+) ∈ Π ⊂ X⇔ Zs

⋂
Zt = {∅} ∀Zs,Zt ∈ Fk

P(Ω+) : k > 2

Zs
⋂
Zt = {∅}⇔ ωi /∈ Zt ∀ωi ∈ Zs : ωi ∈ Ω, i = 1, . . . ,N.

Let zji =

1, ifωi ∈ Zj

0, ifωi /∈ Zj

ωi /∈ Zt ⇔ zti = 0

ωi ∈ Zs ⇔ zsi = 1

Zs
⋂
Zt = {∅}⇔ zsi ∧ z

t
i = 0⇒ (zs) ′ · zt = 0∑N−1

i=1

∑N
j=i+1 zsizsj = 0 zsi, zsj ∈ Z ∀s = 1, . . . ,N

We would like to use a more compact formulation in terms of linear
inequalities. How can we formulate a disjunctive constraint in term
of linear inequality?
zsi ∧ z

t
i = 0⇔ zsi 6 1− z

t
i ⇒ zsi + z

t
i 6 1⇒ zs + zt 6 1

zs + zt 6 1 ∀s 6= t : zs, zt ∈ Z∑N−1
s=1

∑N
t=s+1 zs + zt 6 N

(N− 1)
∑N
i=1 zi 6 N

(N− 1)
∑N
j=1 zij 6 N ∀i = 1, . . . ,N : zij ∈ Z

(N− 1)
∑N
j=1 zij 6 N⇔

∑N
j=1 zij = 0∨

∑N
j=1 zij = 1∑N

j=1 zij 6 1 ∀i = 1, . . . ,N zij ∈ Z

Theorem. Let Υ be the set of all the possible covering of the Universal set
Ω and Z ∈ {0, 1}Nx{0, 1}N.Then Υ = {zij ∈ Z :

∑N
j=1 zij > 1, ∀i =

1, . . . ,N}.

Proof. Let Fk
P(Ω+) ∈ X a generic solution composed by k subsets of

P(Ω+) i.e Fk
P(Ω+) = {Z1, . . . ,Zk}.

Fk
P(Ω+) ∈ Υ ⊂ X⇔

⋃k
j=1 Z

j = Ω⇒ ωi ∈
⋃k
j=1 Z

j ∀i = 1, . . . ,N
ωi ∈

⋃k
j=1 Z

j ⇔ |
⋃k
j=1 Z

j| = N

Let Zs and Zt ∈ P(Ω+) such that s 6= t ∈ {1, . . . , |P(Ω+)|} Then
ωi ∈ Zs

⋃
Zt ⇔ ωi ∈ Zs ∨ωi ∈ Zt

ωi ∈ Zs ⇒ zsi = 1∨ωi ∈ Zt ⇒ zti = 1

ωi ∈ Zs
⋃
Zt ⇔ zsi ∨ z

t
i = 1

zsi ∨ z
t
i = 1⇔ (zsi + z

t
i) − (zsi · zti) = 1

Zs
⋃
Zt = {zsi + z

t
i − z

s
i · zti : zsi ∈ Zs, zti ∈ Zt; i = 1, . . . ,N}

|Zs| = fc(Z
s) =

∑N
i=1 z

s
i

|Zs
⋂
Zt| = f

⋂
c (Z

s,Zt) =
∑N
i=1 z

s
i · zti

|
⋂N
j=1 Z

j| = fc(
⋂N
j=1 Z

j) = f
⋂
c (Z

1,Z2, . . . ,ZN) =
∑N
i=1

∏N
j=1 zij

Zs
⋃
Zt| = f

⋃
c (Z

s,Zt) =
∑N
i=1 z

s
i +

∑N
i=1 z

t
i −

∑N
i=1 z

s
i · zti

= |zs|+ |zt|− (zs) ′zt
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= |Zs|+ |Zt|− |Zs
⋂
Zt|

Therefore according to the Inclusion-Exclusion Principle:
|
⋃N
j=1 Z

j| = fc(
⋃N
j=1 Z

j) = fc(Z
1,Z2, . . . ,ZN)

=
∑N
i=1 fc(z

i)−
∑
16i<j6N fc(Z

i
⋂
Zj)+

∑
16i<j<k6N fc(Z

i
⋂
Zj
⋂
Zk)+

· · ·+ (−1)N−1fc(
⋂N
j=1 Z

j) = 1

=
∑N
j=1 zij +

∑N−1
j=1

∑N
k=j+1 zijzik −

∑N−2
j=1

∑N
k=j+2 zijzij+1zik+

+
∑N−3
j=1

∑N
k=j+3 zijzij+1zij+2zik−

∑N−4
j=1

∑N
k=j+4 zijzij+1zij+2zij+3zik+

· · ·+ (−1)N−1
∏N
j=1 zij = 1 ∀i = 1, . . . ,N

=
∑N
j=1 zij −

∑N−1
s=1 (−1)S−1

∑N−S
j=1

∑N
k=j+S

s+1︷ ︸︸ ︷
zijzij+1 . . . zik = 1 i =

1, . . . ,N

=
∑N
j=1 zij −

∑N−1
s=1 (−1)S−1

∑N−S
j=1

∑N
k=j+S

s+1︷ ︸︸ ︷
zijzij+1 . . . zik 6= 1 ⇔∑N

j=1 zij = 0∑N
j=1 zij > 1 ∀i = 1, . . . ,N

Lemma. LetΠΩ be the set of all the partition of P(Ω+) and Z ∈ {0, 1}Nx{0, 1}N

then ΠΩ = {zij ∈ Z :
∑N
j=1 zij = 1, ∀i = 1, . . . ,N}

Proof. Let gΠ be the constraints of all the possible combination of
disjoint subsets of P(Ω+) and gΥ the constraint regarding all the pos-
sible covering of the Universal set. Then:

gP = gΠ
⋂
gΥ =


∑N
j=1 zij 6 1∑N
j=1 zij > 1

⇒
∑N
j=1 zij = 1 ∀i = 1, . . . ,N.

Now we can move on to the computation of a Lower and Upper
Bound for the Index Localization function.

Theorem. Let fL(Z;O) be the Index Localization function and yLBL ∈ R

the corresponding Lower Bound Value. (i.e fL(Z;O) > yLBL ∀Z ∈ ΠΩ).
Then yLBL =

∑N
i=1 oii such that oii ∈

[
0 1

]
.

Proof. Let fL(Z;O) = q(z1, z2, . . . , zN;O) be the quadratic form of the
Index Localization function. Then
fL(Z;O) =

∑N
k=1 q(Z

k;O)

q(Zk;O) =
∑N
i=1 oiiz

2
ik +

∑N−1
i=1

∑N
j=i+1(oij + oji)zikzjk

gΠΩ =
∑N
k=1 zik = 1 ∀i = 1, . . . ,N zik ∈ {0, 1}

We can replace the quadratic terms (zij)
2 = zij. Therefore, according

to the system of linear equations, it is clear that:∑N
k=1

∑N
i=1 oiiz

2
ik =

∑N
k=1

∑N
i=1 oiizik =

∑N
i=1

∑N
k=1 oiizik

∑N
i=1

∑N
k=1 oiizik = o11

1︷ ︸︸ ︷
N∑
k=1

z1k+o22

1︷ ︸︸ ︷
N∑
k=1

z2k+ · · ·+oii

1︷ ︸︸ ︷
N∑
k=1

zik+ · · ·+
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oNN

1︷ ︸︸ ︷
N∑
k=1

zNk∑N
k=1 zik = 1 ∀i = 1, . . . ,N

In other words the first term of the objective function it is a constant.∑N
i=1

∑N
k=1 oiizik =

∑N
i=1 oii = y

LB
L

fL(Z;O) = yLBL +
∑N
k=1

∑N−1
i=1

∑N
j=i+1(oij + oji)zikzjk

Lemma. Let ΠσNN,1
the singleton set partition. (i.e ΠσNN,1

= {zij = 1 ⇔
i = j : zij ∈ Z i, j = 1, . . . ,N}) and πσNN,1

, the corresponding real value

solution. Then fL(ΠσNN,1
) = πσNN,1

= yLBL

Proof. Let Zk = {zik ∈ Z : i = 1, . . . ,N} and Z(ΠσNN,1
) the classification

matrix associated to the singleton partition.
Z(ΠσNN,1

) = I

zik = zjk = 0 ∀Zk ∈ Z(ΠσNN,1
) ∀k = 1, . . . ,N

It follows that:
fL(Π

σN
n,1

;O) = fL(Z(Π
σN
n,1

);O) = y
LB
L

Theorem. Let fL(Z;O) be the Index Localization function and yUBL ∈ R

the corresponding Upper Bound value. (i.efL(Z;O) 6 yUBL ∀Z ∈ ΠΩ).
Then yUBL = 1.

Proof. fL(Z;O) = yUBL +
∑N
k=1

∑N−1
i=1

∑N
j=i+1(oij + oji)zikzjk

If ziszjs = 1→ zis = zjs = 1→ zik = zjk = 0→ zikzjk = 0

∀k 6= s ∈ {1, . . . ,N}, i < j
Therefore the second term of the objective function is bounded:∑N
k=1

∑N−1
i=1

∑N
j=i+1(oij + oji)zikzjk =

= (o12 + o21)

61︷ ︸︸ ︷
N∑
k=1

z1kz2k+(o13 + o31)

61︷ ︸︸ ︷
N∑
k=1

z1kz3k+

+ · · ·+ (oN−1,N + oN,N−1)

61︷ ︸︸ ︷
N∑
k=1

zN−1,kzNk 6
∑N
i=1

∑N
j=i+1(oij + oji)

It follows that:
fL(Z;O) = yUBL +

∑N
k=1

∑N−1
i=1

∑N
j=i+1(oij+oji)zikzjk 6

∑N
i=1 oii+∑N

i=1

∑N
j=i+1(oij + oji) =

∑N
i=1

∑N
j=1 oij = 1

Lemma. Let Πσ1N,1
be the Universal set partition (i.eΠσ1N,1

= {zij = 1 ⇔
j = 1 : zij ∈ Z i, j = 1, . . . ,N}) and πσ1N,1

the corresponding real value

solution. Then fL(Πσ1N,1
) = πσ1N,1

= yUBL .

Proof. Let Zk = {zik ∈ Z : i = 1, . . . ,N} and Z(Πσ1N,1
) the classification

matrix associated to the Universal set partition.
Z(Πσ1N,1

) = (1 Ø)
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∑N
k=1

∑N−1
i=1

∑N
j=i+1(oij+oji)zikzjk =

∑N−1
i=1

∑N
j=i+1(oij+oji)zi1zj1

=
∑N−1
i=1

∑N
j=i+1(oij + oji)

Then:
fL(Πσ1N,1

;O) = fL(Z(Πσ1N,1
);O) = yLBL +

∑N−1
i=1

∑N
j=i+1(oij + oji) =

yUBL = 1.

The computation of a Lower and Upper Bound for the Index Local-
ization function is crucial in the analysis of it’s energy landscape. In
particular, we prove an important result regarding the ’shape’ of the
function fL(k;Z,O); Specifically we show that this function is mono-
tone decreasing.
As already mentioned, a solution is a partition of the study area
Ω = {ω1, . . . ,ωN} into k parts(or zones) made up by one or more
basic spatial units. Therefore a partition can be defined formally as
a sequence of non negative integers n1 > n2 > · · · > nk > 0 such
that N = n1 + n2 + · · ·+ nk. The number of non zero terms is called
the cardinality of the zone Zs (i.e |Zs| = fC(Z

s) =
∑N
i=1 zis zis ∈ Z).

Clearly there is a mapping between the number of the basic spatial
units of a zone and the elements of the Origin-destination matrix.

Theorem. Let Ek = {oij ∈ Zk : ωi,ωj ∈ Zk} be the set of elements in
the Origin-destination matrix associated to the zone Zk and nk = |Zk| the
number of basic spatial units inside the zone. Then |Ek| = n

2
k

Proof. If ωi,ωj ∈ Zk → Ek = {oii,ojj,oij,oji}
|Zk| = 2 and |Ek| = nk + 2.
It follows that:
|Ek| = 2

(
nk
2

)
+nk = �2

nk!
(nk−2)!�2!

+nk
nk(nk−1)����(nk−2)!

����(nk−2)! +nk = n2k −nk +nk = n2k

For instance, in the case of the trivial solutions it is clear that the
total number of elements in the Origin-destination matrix correspond-
ing to the Universal set is N2 whereas for the singleton partition is N.
Let Πσ1N,1

be the Universal set and EΩ the set of elements in the origin-

destination matrix corresponding to Z(Πσ1N,1
). Then |EΩ| = N2. There-

fore, we have the following mapping:

|EΩ| = |EΩ1 | = N2 →
N∑
i=1

N∑
j=1

oij = fL(Πσ1N,1
)

In other words, the Universal set catches all the patient-flow in the
Origin-destination matrix. Conversely Πσ1N,N

covers the minimum num-
ber of elements (patients) in the origin-destination matrix.

|ES| =

1︷︸︸︷
|ES1 | +

1︷︸︸︷
|ES2 | + · · ·+

1︷︸︸︷
|ESN| = N→

N∑
i=1

oii = fL(Πσ1N,N
)
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Therefore we have the following inequality: fL(1;Z∗,O) > fL(N;Z∗,O).
However, in order to prove that fL(k;Z∗,O) is a monotone decreasing
function, we must check that fL(k;Z∗,O) > fL(k+ 1;Z∗,O) such that
1 < k+ 1 6 N.
First of all we prove that |EΩ| > |EΠ(σkN)|. In other words the num-
ber of elements in the Origin-destination matrix corresponding to the
Universal set partition is always grater than any other partition in the
solution space.

Theorem. Let EΠ(σkN) be the set of elements in the origin-destination matrix
corresponding to Z(ΠσkN). Then |EΩ| > |EΠ(σkN)| : 2 6 k 6 N.

Proof. EΠ(σkN) = E
Π(σkN)
1

⋃
E
Π(σkN)
2

⋃
· · ·
⋃
E
Π(σkN)
k

|EΠ(σkN)| = |E
Π(σkN)
1 |+ |E

Π(σkN)
2 |+ · · ·+ |E

Π(σkN)
k |

We want to prove that:

|EΩ| > |E
Π(σkN)
1 |+ |E

Π(σkN)
2 |+ · · ·+ |E

Π(σkN)
k |

N ·N > n1 ·n1 +n2 ·n2 + · · ·+nk ·nk.
Recalling that a partition of the study area is basically a partition of
an integer:
N = n1+n2+ · · ·+ni+ · · ·+nk n,ni ∈N+, i ∈ {1, . . . ,k} such that
N > n1 > n2 > · · · > nk. It follows that N · ni > ni · ni∀k > 1, i ∈
1, . . . ,k
N ·

∑k
i=1 ni = N ·n1 +N ·n2 + · · ·+N ·ni + · · ·+N ·nk = N ·N∑k

i=1 ni ·ni = n1 ·n1 +n2 ·n2 + · · ·+ni ·ni + · · ·+nk ·nk
It is clear then:
N ·

∑k
i=1 ni >

∑k
i=1 ni ·ni

N ·N >
∑k
i=1 ni ·ni

The previous proof is a consequence of the fact that the set parti-
tions are essentially a partially ordered set (Poset) in which the ele-
ments are ordered by reverse refinement.

Definition. A partially ordered set (P,6) is a set P with an ordered relation
6 which has the following properties:

1. a 6 a ∀a ∈ P

2. a 6 b and b 6 a→ a = b

3. a 6 b and b 6 c→ a 6 c

A number of methods can be used to describe a poset. One is to
maintain a list of all pairs (a,b) with a < b (this means a 6 b and
a 6= b) we say that b covers a if a < b and there is no c satisfy-
ing a < c < b. We shall write a < b for b covers a. Because of
property (3), we need only maintain a list of all pairs (a,b) with
a < b. These are called the covering relations of P. For ease of use, if

[ August 24, 2015 at 18:34 – classicthesis version 1.0 ]



1.4 the optimisation model 41

there are more than one cover, we use the following compact notation
{(a,b), (a, c)} = ρ(a,6) = {b, c}. We can visualize a poset as a graph
with the ’largest’ elements of P as vertices at the top, the ’smallest’ at
the bottom, and the other element of P distributed appropriately in
between. An edge connects a and b if and only if a < b. Such a dia-
gram is called a Hasse diagram. However, this kind of representation
becomes difficult to visualize even for small values of N. Now that
we are more familiar with the concept of partially ordered set, we can
introduce the notion of Partition Lattice.

Definition. Partition Lattice: PΩ is a poset in which the elements are or-
dered by reverse refinement. That is:
Given ΠσkN,s

= {Z1, . . . ,Zk} and Πσk+1N,q
= {Z1, . . . ,Zk+1}

ΠσkN,s
< Πσk+1N,q

⇔ ∃p,m, t : Zsp = Zqm
⋃
Z
q
t

∃i, j : Zsi = Z
q
j ∀i 6= p, j 6= {m, t}

i,p ∈ {1, . . . ,k} j,m, t ∈ {1, . . . ,k+ 1}

Thus the covering relations are obtained by splitting one block(zone)
of ΠσkN,s

into two blocks of Πσk+1N,q
with all of the other blocks of ΠσkN,s

and Πσk+1N,q
identical.

For example the partition:

Πσ24,1
= {{123}, {4}} =

[
z7 z8

]
ρ(Πσ24,1

,6) = {Πσ34,1
,Πσ34,2

,Πσ34,6
}

Πσ34,1
= {{12}, {3}, {4}} =

[
z3 z4 z8

]
{123} = {12}∪ {3}

Πσ34,2
= {{13}, {2}, {4}} =

[
z5 z2 z8

]
{123} = {13}∪ {2}

Πσ34,3
= {{1}, {23}, {4}} =

[
z1 z6 z8

]
{123} = {1}∪ {23}

It is worth noting that:

(z3) ′ · z4 = 0→ z7 = z3 + z4

(z5) ′ · z2 = 0→ z7 = z5 + z2

(z1) ′ · z6 = 0→ z7 = z1 + z6

It is clear that:

ρ(Πσ1N,1
,6) = {Πσ2N,i

} i = 1, . . . ,σ2N

ρ(ΠσN−1
N,i

,6) = {ΠσNN,1
} i = 1, . . . ,σN−1

N

Theorem. Let ΠσkN,s
< Πσk+1N,q

then
fL(k;Z(ΠσkN,s

),O) > fL(k+ 1;Z(Πσk+1N,q
),O)

s ∈ {1, . . . ,k} and q ∈ {1, . . . ,k+ 1}
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Proof. if ΠσkN,s
< Πσk+1N,q

then

(i) ∃p,m, t : Zsp = Zqm ∪Zqt Z
q
m ∩Zqt = ∅ Z

q
m,Zqt 6= ∅

(ii) i, j : Zsi = Z
q
i ∀i 6= p, j 6= {m, t}

Let Zs = {Z1, . . . ,Zp, . . . ,Zk} and Zq = {Z1, . . . ,Zm, . . . ,Zt, . . . ,Zk+1}
the classification matrices of ΠσkN,s

and Πσk+1N,q
respectively. i.e Z(ΠσkN,s

) =

Zs and Z(Πσk+1N,q
) = Zq. Then according to condition (i):

z
p
i = zmi + zti z

p
i ∈ Zp, zmi ∈ Zm, zti ∈ Zt ∀i = {1, . . . ,N}

Let Esp = {oij ∈ Zsp : ωi,ωj ∈ Zsp} be the set of elements in the origin-
destination matrix associated to the zone Zsp and nsp = |Zp|. Then
|Esp| = n2s . Similarly nqm = |Zm| and nqt = |Zt|,|Eqm| = n2m,|Eqt | = n2t .
Then nsp = nqm +nqt such that nsp > n

q
m > nqt

As proved for the Universal set |EΩ| we have |Esp| > |E
q
m| + |E

q
t | →

n2s > n
2
m +n2t So we are going to prove that:

fL(Z
s
p,O) > fL(Z

q
m,O) + fL(Z

q
t ,O)

In order to verify this inequality we need to prove that:∑N−1
i=1

∑N
j=i+1(oij + oji)z

p
i z
p
j >

∑N−1
i=1

∑N
j=i+1(oij + oji)z

m
i z
m
j +

+
∑N−1
i=1

∑N
j=i+1(oij + oji)z

t
iz
t
j

if zpi = 1→ zmi + zti = 1↔ zmi ∨ zti = 1

and zpj = 1→ zmj + ztj = 1↔ zmj ∨ ztj = 1

According to the following equation: nsp = nqm +nqt than∑N
i=1 z

p
i >

∑N
i=1 z

m
i → ∃i : z

p
i = 1 and zmi = 0

∀j 6= i : zmj = 1 and zpj = 1→ z
p
i z
p
j = 1, zmi z

m
j = ztiz

t
j = 0

fL(Z
s
p,O) > fL(Z

q
m) + fL(Z

q
t )

It is worth noting that:
fL(Z

s
p,O) = fL(Z

q
m) + fL(Z

q
t ) ifoij = oji = 0

Clearly for property (ii):∑k
i=1 fL(Z

s
i ) =

∑k+1
j=1 fL(Z

q
j ) ∀i 6= p, j 6= {m, t}

Lemma. fL(k;Z∗,O) is a monotone decreasing function. i.e fL(k;Z∗,O) >
fL(k+ 1;Z∗,O) such that 1 < k+ 1 6 N.

Proof. Let Π∗(σkN,s) = Max fL(Z;=,k) and
Π∗(σk+1N,q ) = Max fL(Z;O,k+ 1). Then according to the previous the-
orem if Π∗(σkN,s) < Π

∗(σk+1N,q ). It follows that:
fL(k;Z(Π∗(σkN,s),O)) > fL(k+ 1;Z(Π

∗(σk+1N,q ),O)
fL(k;Z∗,O) > fL(k+ 1;Z∗,O)
if Π∗(σkN,s) > Π∗(σk+1N,q ) then:
fL(k,Z(Π∗(σkN,s)),O) > fL(k+ 1,Z(Π

∗(σk+1N,s )),O).
If it were:
fL(k+ 1,Z(Π∗(σk+1N,q )),O) > fL(k,Z(Π∗(σkN,s)),O)
then according to the proved theorem, should exist a partition t such
that:
fL(k,Z(Π∗(σkN,t)),O) > fL(k+ 1,Z(Π

∗(σk+1N,q )),O)
and this implies:
fL(k,Z(Π∗(σkN,t)),O) > fL(k,Z(Π∗(σkN,s)),O) = MaxfL(Z;O,k).
That is a contradiction.
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k Π(σk4) ρ(Π(σk4),6) fL(ρ1) fL(ρ2) fL(ρ3) fL(Z(Πσk4,i
))

2 Πσ24,1
Πσ34,1

,Πσ34,2
,Πσ34,6

.7 .42 .49 .81

Πσ24,2
Πσ34,1

,Πσ34,4
,Πσ34,5

.7 .48 .45 .83

Πσ24,3
Πσ34,1

,Πσ34,6
.7 .28 .76

Πσ24,4
Πσ34,2

,Πσ34,3
,Πσ34,4

.42 .49 .48 .56

Πσ24,5
Πσ34,2

,Πσ34,5
.42 .45 .47

Πσ24,6
Πσ34,3

,Πσ34,4
.49 .48 .57

Πσ24,7
Πσ34,3

,Πσ34,5
,Πσ34,6

.49 .45 .28 .6

Max fL(Z;O, 2) = fL(Πσ24,2
) .83

3 Πσ34,1
Πσ44,1

.4 .7

Πσ34,2
Πσ44,1

.4 .42

Πσ34,3
Πσ44,1

.4 .49

Πσ34,4
Πσ44,1

.4 .48

Πσ34,5
Πσ44,1

.4 .45

Πσ34,6
Πσ44,1

.4 .28

Max fL(Z;O, 3) = fL(Πσ34,1
) .7

Table 11: Partition set Lattice|Ω| = 4

Foe example the partition:

Πσ24,1
= {{123}, {4}} =

[
z7 z8 0 0

]
fL(z7) = o11 + 022 + o33 + o12 + o21 + o13 + o31 + o23 + o32

Πσ34,1
= {{12}, {3}, {4}} =

[
z3 z4 z8 0

]
fL(z3) = o11 + o22 + o12 + o21

fL(z4) = o33

fL(z7) − (fL(z3) + fL(z4)) = o13 + o31 + o23 + o32 = .11

1.4.2 The Homogeneity Index function

The problem of finding the best partition that minimizes the Homo-
geneity Index function is quite similar, in its formulation, to data par-
titioning or clustering.
The data partitioning problem consists of merging similar elements
into sets that are as distinct as possible. To compare two elements, the
notion of distance is used. That brings the data partitioning problem
down to the creation of subsets of elements as distinct from each other
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as possible. Therefore this function is a simple form of k − means
clustering model and it is based on the calculation of attribute dis-
tance between two observation. Depending on how the distance is
calculated the function model can result: Euclidean distance, Manhat-
tan distance and the power distance.
Therefore, the next steps in the definition of the Homogeneity func-
tion are:

1. The identification of the independent variables.

2. The definition of the three metrics(i.e Euclidean,Manhattan and
power).

In the zone design context, the homogeneity function is structured
on the base of the data vector d(ωi). Recalling that d(ωi) represents
the b.s.u data, if we exclude the patient in-flow and out-flow, what we
have left are the attributes related to a b.s.u. From now on we identify
with D the Data array, i.e the array containing the attributes values
for each b.s.u.

Let M represent the number of attributes related to a b.s.u. Then
let be:

d(ωi) = di =


di

1

di
2
...

di
M

 ∀i = 1, . . . ,N

The data vector containing all the information regarding the popu-
lation attributes in the study area.It’s worth noting that the elements
of this vector are vectors. In fact for each basic b.s.u we can have
more than a single value for a specific variable; specifically there are
as many values as the number of people living in the b.s.u. However,
in this research we standardise the variables to overcome this issue.

di
j =

[
dij,1 dij,2 . . . dij,Pi

]
j = 1, . . . ,M

We can collect all these data in the Data array D:

D =


d1

1 d1
2 . . . d1

M

d2
1 d2

2 . . . d2
M

...
...

dN
1 dN

2 . . . dN
M

 =
[
D1 D2 . . . Dj . . . DM

]
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Dj =



d1
j (V11) d1

j (V12) . . . d1
j (V1l) . . . d1

j (V1N)
...

...
...

...
...

...

dk
j (Vk1) dk

j (Vk2) . . . dk
j (Vkl) . . . dk

j (VkN)
...

...
...

...
...

...

dN
j (VN1) dN

j (VN2) . . . dN
j (VNl) . . . dN

j (VNN)


It is worth noting that each attribute j has an Origin-destination ma-
trix. Therefore, the vector dk

j (Vkl) contains as many values as the total
number of votes moving from the patient postcode (k) to the provider
postcode (l).

dk
j (Vkl) =

xi ∈ R vkl > 0

−1 otherwise

dk
j (Vkl) =

[
x1 x2 . . . xvkl

]
In order to select this vector, we introduce the following matrix:

I(Vkl) =


1 r = c

∑l−1
s=1 vis < r 6

∑l−1
s=1 vis + vkl

0 otherwise∑l−1
s=1 vis = 0 l = 1

dk
j (Vkl) = dk

j · I(vkl)

Now that we know the Data vector, it is possible to define the three
different metrics.
Euclidean distance is the distance between two observations A and B
resulting from the sum of squared differences of their x,y coordinates.
Structuring a non-geometric space, the notion of distance does not rep-
resent anymore a measure of geometrical link such as the original
Euclidean distance but highlights the differences of attributes.

dE =
√

(xA − xB)2 + (yA − yB)2

dE =

√√√√M∑
i=1

(xiA − xiB)2

where, xiA and xiB are the values of observations A and B respec-
tively for variable i in a M − dimensional attribute space (M vari-
ables in the dataset). The generic formula of Euclidean distance dE
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can be formulated according to the number of variables.
In the case of a single dimension attribute space the distance indi-
cates the sum of squared differences of two observations using one
variable (one dimension). In practice, the distance is calculated be-
tween the attribute values of each areal unit (ωi) in zone Zk and the
mean of zone Zk (µ(Zk)).
Suppose we have only an attribute value for each b.s.u (we are ignor-
ing the origin-destination matrix):

D =



d11

d21
...

d
j
1
...

dN1


=



x1

x2
...

xj
...

xN


Then the distance for an areal unit ωj is defined as:

d
j
E(Zk) =

√
(µ(Zk) − xj)2

µ(Zk) =

∑N
j=1 xj

|Zk|
xj ∈ Zk

Suppose we have a partition composed by k zones. Then the Ho-
mogeneity Index function is calculated as the sum of the distances
expressed as:

fH(Z,D) =

∑k
i=1 IHi

(Zi,D)

k
Zi ∈ ΠσkN,S

IHi
(Zi,D) = djE(Zi)

The minimization of distances between the mean of zones and their
areal units produce homogeneous output zones consisting of areal
units with similar values for the selected variable.
Other variations of Homogeneity are available in the zone design sys-
tem differing on the method of distance calculation. The Manhattan
distance (or block distance, taxi-cab distance) is similar to the Eu-
clidean distance but the squared differences are replaced with absolute
differences of observations. The mathematical definition of Manhattan
distance (dM) is expressed as:

dAB
M =

N∑
i=1

|xiA − xiB|
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And in the zone design system it is defined as:

d
j
M(Zk) = |µ(Zk) − xj|

µ(Zk) =

∑N
j=1 xj

|Zk|
xj ∈ Zk

In general, the zone design system supports both Homogeneity
functions providing two ways for measuring differences between the
zones mean and areal unit attributes. In practice, the system copes
faster with the Manhattan distances in relation to Euclidean distance
because the process to find the absolute value of a number is calcu-
lated much easier than to find the square value of same number.
However, the optimisation of an objective function using Manhattan
distances provides sufficient improvement compared to the Euclidean
distance where the attribute differences shrink between the observa-
tions. Moreover, the choice of the Manhattan distance is more conve-
nient if we’d like to formulate an equivalent linear model.
Theoretically speaking, the above attribute distances can be formu-
lated using a generic formula, extending the previous metrics as fol-
lows:

dAB
p = m

√√√√ n∑
i=1

|xiA − xiB|k

Where, m and k are the two powers. If both powers are equal to
2 then the distance is identical to Euclidean distance. In addition, if
both powers are equal to one then the distance is identical to Manhat-
tan distance.
In the zone design context the equation can be expressed as:

djp(Zk) =
m

√
(|µ(Zk) − xj|)k

µ(Zk) =

∑N
j=1 xj

|Zk|
xj ∈ Zk

where, m and k are the two powers inserted by the user. The pow-
ered distance is then calculated for the whole model according to the
objective function:

min fH(Z,D) =

∑k
i=1 IHi

(Zi,D)

k
Zi ∈ ΠσkN,S

IHi
(Zi,D) = djE(Zi)
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